Jiaxin Zhang

AI Researcher
Salesforce AI Research

I am currently a Lead Research Scientist at Salesforce AI Research, where I lead a team building reliable and trustworthy enterprise AI agents. My research is fundamentally driven by the pursuit of reliability and reasoning in LLMs, specifically focusing on building robust agents for long-horizon systems, including deep research, uncertainty quantification, and advancing multi-step reasoning via post-training/RL and test-time scaling. I am also deeply interested in pushing the boundaries of AI self-improvement (e.g., on-policy self-distillation).

I am passionate about bridging the gap between frontier AI research and large-scale real-world impact. Prior to Salesforce, I was a Senior Staff Research Scientist and a founding member of the AI Research team at Intuit. I architected industry-deployed hallucination detection frameworks (e.g., SAC3), automatic prompt optimization libraries (PhaseEvo), reliable RAG systems (Ski), and post-training alignment pipelines (IMFL) for enterprise financial LLM models, chatbots and agents.

My technical roots lie deeply in extreme-scale computing. During my tenure as a Staff Research Scientist at Oak Ridge National Laboratory (ORNL), I architected distributed deep learning systems that scaled to 20,000+ GPUs on world-class supercomputers (Summit, Frontier). As a PI/co-PI, I led 7 DOE projects ($6.4M+ in total) pioneering Generative AI for Science to accelerate discoveries in Physics, Chemistry, and Material Science, publishing in top-tier journals (Nature series, IF 40+). I am also a recipient of the Promising Early-Career Researcher Award from the US Department of Energy. Before ORNL, I earned my Ph.D. from Johns Hopkins University.

Beyond research, I am an active contributor to the open-source community. I maintain several heavily starred GitHub projects (3,000+ stars) focused on LLM RAG, Prompt Optimization, and Reliability. Always feel free to reach out to me for discussion!

News & Updates


10/2024 [Invited Talk] I will give a talk in NeurIPS 2024 Workshop “Interpretable AI: Past, Present and Future”, Dec, 2024, Vancouver, Canada!
10/2024 [EMNLP x 6] Six Long Papers (3 Main, 1 Findings, 2 Industry Track) are accepted by EMNLP 2024. 2 oral presentations and 4 poster presentations! See you in Miami!
06/2024 [Invited talk] I will present my research on hallucination detection and mitigation at Intuit Open Source Meetup!
05/2024 One UQ paper was accepted by AISTATS 2024. See you in Valencia, Spain!
03/2024 One paper on UQ for LLM was accepted by EACL 2024.
11/2023 I created two Github Repos to share resources and papers on LLM Prompt Optimization and LLM RAG. Welcome to contribute and work together!
10/2023 Two papers on “DECDM: Document Enhancement using Cycle-Consistent Diffusion Models” and “On the Quantification of Image Reconstruction Uncertainty without Training Data” are accpeted by WACV 2024!
10/2023 Our paper on “A Divide-Conquer-Reasoning Approach to Consistency Evaluation and Improvement in Blackbox Large Language Models” is accepted by NeurIPS 2023 Workshop on Socially Responsible Language Modelling Research.
10/2023 Our paper on SAC^3: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency is accepted by EMNLP 2023! The code is coming soon!
09/2023 One patent on “Model based document image enhancement” is issued and published.

Selected Publications


(Full publication list can be found on Google Scholar and on the Publications page.)

  1. arXiv 2026
    Jiaxin Zhang, Caiming Xiong, and Chien-Sheng Wu
    2026
  2. arXiv 2026
    Jiaxin Zhang, Prafulla Kumar Choubey, Kung-Hsiang Huang, Caiming Xiong, and Chien-Sheng Wu
    2026
  3. arXiv 2026
    Jiaxin Zhang, Wendi Cui, Zhuohang Li, Lifu Huang, Bradley Malin, Caiming Xiong, and Chien-Sheng Wu
    2026
  4. ICLR 2026
    Justin Chih-Yao Chen, Becky Xiangyu Peng, Prafulla Kumar Choubey, Kung-Hsiang Huang, Jiaxin Zhang, Mohit Bansal, and Chien-Sheng Wu
    In International Conference on Learning Representations, 2026
  5. arXiv 2025
    Haoyi Qiu, Yilun Zhou, Pranav Narayanan Venkit, Kung-Hsiang Huang, Jiaxin Zhang, Nanyun Peng, and Chien-Sheng Wu
    2025
  6. arXiv 2025
    Ying Shen, Zhiyang Xu, Jiuhai Chen, Shizhe Diao, Jiaxin Zhang, Yuguang Yao, Joy Rimchala, Ismini Lourentzou, and Lifu Huang
    2025
  7. EMNLP 2025
    Oral
    Kaijie Chen, Zihao Lin, Zhiyang Xu, Ying Shen, Yuguang Yao, Joy Rimchala, Jiaxin Zhang, and Lifu Huang
    In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 2025
  8. EMNLP 2025
    Zhuohang Li, Chao Yan, Nicholas J Jackson, Wendi Cui, Bo Li, Jiaxin Zhang, and Bradley A Malin
    In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 2025
  9. EMNLP 2025
    Jiaxin Zhang
    In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, 2025
  10. ACL 2025
    Wendi Cui, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley A Malin, Sricharan Kumar, and Jiaxin Zhang
    In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, 2025
  11. ACL 2025
    Wendi Cui, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley A Malin, Sricharan Kumar, and Jiaxin Zhang
    In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, 2025
  12. ICLR 2025
    Zhiyang Xu, Minqian Liu, Ying Shen, Joy Rimchala, Jiaxin Zhang, Qifan Wang, Yu Cheng, and Lifu Huang
    In International Conference on Learning Representations, 2025
  13. NAACL 2025
    Yu Wang, Kamalika Das, Xiang Gao, Wendi Cui, Peng Li, and Jiaxin Zhang
    In Proceedings of the 2025 Conference of the North American Chapter of the Association for Computational Linguistics, 2025
  14. EMNLP 2024
    Oral
    Wendi Cui, Zhuohang Li, Damien Lopez, Kamalika Das, Bradley Malin, Sricharan Kumar, and Jiaxin Zhang
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 2024
  15. EMNLP 2024
    Jiaxin Zhang, Wendi Cui, Yiran Huang, Kamalika Das, and Sricharan Kumar
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  16. EMNLP 2024
    Oral
    Zhuohang Li, Jiaxin Zhang, Chao Yan, Kamalika Das, Sricharan Kumar, Murat Kantarcioglu, and Bradley A Malin
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  17. EMNLP 2024
    Weichao Zhou, Jiaxin Zhang, Hilaf Hasson, Anu Singh, and Wenchao Li
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  18. EMNLP 2024
    Minqian Liu, Zhiyang Xu, Zihao Lin, Trevor Ashby, Joy Rimchala, Jiaxin Zhang, and Lifu Huang
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  19. EMNLP 2024
    Ankita Sinha, Wendi Cui, Kamalika Das, and Jiaxin Zhang
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing - Industry Track, 2024
  20. EACL 2024
    Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das
    In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics, 2024
  21. AISTATS 2024
    Jiaxin Zhang, Kamalika Das, and Sricharan Kumar
    In International Conference on Artificial Intelligence and Statistics, 2024
  22. WACV 2024
    Jiaxin Zhang, Joy Rimchala, Lalla Mouatadid, Kamalika Das, and Sricharan Kumar
    In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024
  23. WACV 2024
    Jiaxin Zhang, Sirui Bi, and Victor Fung
    In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024
  24. NeurIPS 2023
    Jiaxin Zhang, Zhuohang Li, Kamalika Das, and Sricharan Kumar
    In Advances in Neural Information Processing Systems, 2023
  25. EMNLP 2023
    Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Malin, and Sricharan Kumar
    In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023
  26. AAAI 2023
    Jiaxin Zhang, Sirui Bi, and Victor Fung
    Proceedings of the AAAI Conference on Artificial Intelligence, 2023
  27. AAAI 2023
    Oral
    Yu Wang, Jan Drgona, Jiaxin Zhang, Karthik Somayaji NS, Frank Y Liu, Malachi Schram, and Peng Li
    Proceedings of the AAAI Conference on Artificial Intelligence, 2023
  28. CVPR 2022
    Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022
  29. AAAI 2022
    Jingbo Sun, Li Yang, Jiaxin Zhang, Frank Liu, Mahantesh Halappanavar, Deliang Fan, and Yu Cao
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2022
  30. NeurIPS 2021
    Jan Drgona, Sayak Mukherjee, Jiaxin Zhang, Frank Liu, and Mahantesh Halappanavar
    Advances in Neural Information Processing Systems, 2021
  31. UAI 2021
    Jiaxin Zhang, Hoang Tran, Dan Lu, and Guannan Zhang
    In Uncertainty in Artificial Intelligence, 2021
  32. AISTATS 2021
    Jiaxin Zhang, Sirui Bi, and Guannan Zhang
    In International Conference on Artificial Intelligence and Statistics, 2021
  33. NeurIPS 2019
    Guannan Zhang, Jiaxin Zhang, and Jacob Hinkle
    Advances in Neural Information Processing Systems, 2019

Recent Talks


→ all talks

Conference Travel


  • Dec 2024, NeurIPS @ Vancouver 🇨🇦
  • Nov 2024, EMNLP @ Miami 🇺🇸
  • Jul 2024, ICML @ Vienna 🇦🇹
  • May 2024, AISTATS @ Valencia 🇪🇸
  • Jan 2024, WACV @ Hawaii 🇺🇸
  • Dec 2023, NeurIPS @ New Orleans 🇺🇸
  • Dec 2023, EMNLP @ Singapore 🇸🇬

Awards & Honors


  • Intuit CTO Award (Top 1% Performance), Intuit 2024
  • Intuit A2D Innovation Award (Top 1%, Team Lead), Intuit 2024, 2025
  • Promising Early-Career Researcher Award, Oak Ridge National Laboratory, US Department of Energy 2020
  • Chinese Outstanding Students Abroad Award, Ministry of Education of the P.R. China 2019
  • China National Scholarship, Ministry of Education of the P.R. China 2009, 2012

Professional Services


  • Area Chair: NeurIPS, ACL, EMNLP, NAACL 2024–now
  • Reviewer: NeurIPS, ICML, ICLR, ACL, EMNLP, NAACL, TMLR, JMLR, CVPR, ICCV, ECCV, AAAI, AISTATS, KDD 2020–now