publications

2024

  1. EMNLP 2024
    Synthetic Knowledge Ingestion: Towards Knowledge Refinement and Injection for Enhancing Large Language Models
    Jiaxin Zhang, Wendi Cui, Yiran Huang, Kamalika Das, and Sricharan Kumar
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  2. EMNLP 2024
    Do You Know What You Are Talking About? Characterizing Query-Knowledge Relevance For Reliable Retrieval Augmented Generation
    Zhuohang Li, Jiaxin Zhang, Chao Yan, Kamalika Das, Sricharan Kumar, Murat Kantarcioglu, and Bradley A Malin
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  3. EMNLP 2024
    HyQE: Ranking Contexts with Hypothetical Query Embeddings
    Weichao Zhou, Jiaxin Zhang, Hilaf Hasson, Anu Singh, and Wenchao Li
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  4. EMNLP 2024
    Holistic evaluation for interleaved text-and-image generation
    Minqian Liu, Zhiyang Xu, Zihao Lin, Trevor Ashby, Joy Rimchala, Jiaxin Zhang, and Lifu Huang
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
  5. EMNLP 2024
    Survival of the Safest: Towards Secure Prompt Optimization through Interleaved Multi-Objective Evolution
    Ankita Sinha, Wendi Cui, Kamalika Das, and Jiaxin Zhang
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing - Industry Track, 2024
  6. EMNLP 2024
    DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and Improvement of Large Language Models
    Wendi Cui, Zhuohang Li, Lopez Damien, Kamalika Das, Bradley Malin, Sricharan Kumar, and Jiaxin Zhang
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing - Industry Track, 2024
  7. EACL 2024
    SPUQ: Perturbation-Based Uncertainty Quantification for Large Language Models
    Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das
    In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics, 2024
  8. arXiv
    PhaseEvo: Towards Unified In-Context Prompt Optimization for Large Language Models
    Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley Malin, and Sricharan Kumar
    2024
  9. WACV 2024
    DECDM: Document Enhancement using Cycle-Consistent Diffusion Models
    Jiaxin Zhang, Joy Rimchala, Lalla Mouatadid, Kamalika Das, and Sricharan Kumar
    In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024
  10. WACV 2024
    On the Quantification of Image Reconstruction Uncertainty without Training Data
    Jiaxin Zhang, Sirui Bi, and Victor Fung
    In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024
  11. arXiv
    GLOCALFAIR: Jointly Improving Global and Local Group Fairness in Federated Learning
    Syed Irfan Ali Meerza, Luyang Liu, Jiaxin Zhang, and Jian Liu
    2024

2023

  1. NeurIPS 2023
    Interactive Multi-fidelity Learning for Cost-effective Adaptation of Language Model with Sparse Human Supervision
    Jiaxin Zhang, Zhuohang Li, Kamalika Das, and Sricharan Kumar
    In Advances in Neural Information Processing Systems, 2023
  2. EMNLP 2023
    SAC^3: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency
    Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Malin, and Sricharan Kumar
    In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023
  3. ICLR 2023
    On the Robustness of Diffusion Inversion in Image Manipulation
    Jiaxin Zhang, Kamalika Das, and Sricharan Kumar
    In ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models, 2023
  4. NeurIPS 2023
    A Divide-Conquer-Reasoning Approach to Consistency Evaluation and Improvement in Blackbox Large Language Models
    Wendi Cui, Jiaxin Zhang, Zhuohang Li, Damien Lopez, Kamalika Das, Malin Bradley, and Sricharan Kumar
    In NeurIPS 2023 Workshop on Socially Responsible Language Modelling Research, 2023
  5. ICASSP 2023
    Speech Privacy Leakage from Shared Gradients in Distributed Learning
    Zhuohang Li, Jiaxin Zhang, and Jian Liu
    In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023
  6. AAAI 2023
    Accelerating Inverse Learning via Intelligent Localization with Exploratory Sampling
    Jiaxin Zhang, Sirui Bi, and Victor Fung
    Proceedings of the AAAI Conference on Artificial Intelligence, 2023
  7. AAAI 2023
    AutoNF: Automated Architecture Optimization of Normalizing Flows Using a Mixture Distribution Formulation
    Yu Wang, Jan Drgona, Jiaxin Zhang, Karthik Somayaji NS, Frank Y Liu, Malachi Schram, and Peng Li
    Proceedings of the AAAI Conference on Artificial Intelligence, 2023
  8. ACM Asia CCS 2023
    RecUP-FL: Reconciling Utility and Privacy in Federated learning via User-configurable Privacy Defense
    Yue Cui, Syed Irfan Ali Meerza, Zhuohang Li, Luyang Liu, Jiaxin Zhang, and Jian Liu
    In Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security, 2023
  9. AI4Science
    Data driven modeling of interfacial traction–separation relations using a thermodynamically consistent neural network
    Congjie Wei, Jiaxin Zhang, Kenneth M Liechti, and Chenglin Wu
    Computer Methods in Applied Mechanics and Engineering, 2023
  10. AI4Science
    Machine learning for high-entropy alloys: progress, challenges and opportunities
    Xianglin Liu, Jiaxin Zhang, and Zongrui Pei
    Progress in Materials Science, 2023

2022

  1. AI4Science
    Atomic structure generation from reconstructing structural fingerprints
    Victor Fung, Shuyi Jia, Jiaxin Zhang, Sirui Bi, Junqi Yin, and P Ganesh
    Machine Learning: Science and Technology, 2022
  2. IJCAI Workshop
    Self-supervised Novelty Detection for Continual Learning: A Gradient-Based Approach Boosted by Binary Classification
    Jingbo Sun, Li Yang, Jiaxin Zhang, Frank Liu, Mahantesh Halappanavar, Deliang Fan, and Yu Cao
    In Continual Semi-Supervised Learning: First International Workshop, CSSL 2021, Virtual Event, August 19–20, 2021, Revised Selected Papers, 2022
  3. EMBC
    Fair and Privacy-Preserving Alzheimer’s Disease Diagnosis Based on Spontaneous Speech Analysis via Federated Learning
    Syed Irfan Ali Meerza, Zhuohang Li, Luyang Liu, Jiaxin Zhang, and Jian Liu
    In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2022
  4. EMBC
    Privacy-preserving Speech-based Depression Diagnosis via Federated Learning
    Yue Cui, Zhuohang Li, Luyang Liu, Jiaxin Zhang, and Jian Liu
    In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2022
  5. CVPR 2022
    Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
    Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022
  6. AI4Science
    Invertible neural networks for E3SM land model calibration and simulation
    Dan Lu, Daniel M Ricciuto, and Jiaxin Zhang
    In ICLR 2022 Workshop on AI for Earth and Space Science, 2022
  7. AAAI 2022
    Gradient-based Novelty Detection Boosted by Self-supervised Binary Classification
    Jingbo Sun, Li Yang, Jiaxin Zhang, Frank Liu, Mahantesh Halappanavar, Deliang Fan, and Yu Cao
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2022
  8. AI4Science
    Deep-green inversion to extract traction-separation relations at material interfaces
    Congjie Wei, Jiaxin Zhang, Kenneth M Liechti, and Chenglin Wu
    International Journal of Solids and Structures, 2022
  9. AI4Science
    Blackbox optimization for approximating high-fidelity heat transfer calculations in metal additive manufacturing
    Sirui Bi, Benjamin Stump, Jiaxin Zhang, Yousub Lee, John Coleman, Matt Bement, and Guannan Zhang
    Results in Materials, 2022

2021

  1. ICPADS
    Byzantine-robust federated learning through spatial-temporal analysis of local model updates
    Zhuohang Li, Luyang Liu, Jiaxin Zhang, and Jian Liu
    In 2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS), 2021
  2. AI4Science
    Inverse design of two-dimensional materials with invertible neural networks
    Victor Fung, Jiaxin Zhang, Guoxiang Hu, and Bobby G Sumpter
    npj Computational Materials, 2021
  3. AI4Science
    Simulation intelligence: Towards a new generation of scientific methods
    Alexander Lavin, Hector Zenil, Brooks Paige, David Krakauer, Justin Gottschlich, Tim Mattson, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, and  others
    arXiv preprint arXiv:2112.03235, 2021
  4. NeurIPS 2021
    On the Stochastic Stability of Deep Markov Models
    Jan Drgona, Sayak Mukherjee, Jiaxin Zhang, Frank Liu, and Mahantesh Halappanavar
    Advances in Neural Information Processing Systems, 2021
  5. UQ
    Probabilistic modeling and prediction of out-of-plane unidirectional composite lamina properties
    Jiaxin Zhang, Michael Shields, and Stephanie TerMaath
    Mechanics of Advanced Materials and Structures, 2021
  6. AI4Science
    Transfer learning based variable-fidelity surrogate model for shell buckling prediction
    Kuo Tian, Zengcong Li, Jiaxin Zhang, Lei Huang, and Bo Wang
    Composite Structures, 2021
  7. ICLR Workshop
    Variational Generative Flows for Reconstruction Uncertainty Estimation
    Jiaxin Zhang, Jan Drgona, Sayak Mukherjee, Mahantesh Halappanavar, and Frank Liu
    In ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning, 2021
  8. ERA
    Accelerating reinforcement learning with a Directional-Gaussian-Smoothing evolution strategy
    Zhang Jiaxin, Tran Hoang, and Zhang Guannan
    Electronic Research Archive, 2021
  9. AI4Science
    Benchmarking graph neural networks for materials chemistry
    Victor Fung, Jiaxin Zhang, Eric Juarez, and Bobby G Sumpter
    npj Computational Materials, 2021
  10. UAI 2021
    Enabling Long-range Exploration in Minimization of Multimodal Functions
    Jiaxin Zhang, Hoang Tran, Dan Lu, and Guannan Zhang
    In Uncertainty in Artificial Intelligence, 2021
  11. AISTATS 2021
    A Scalable Gradient Free Method for Bayesian Experimental Design with Implicit Models
    Jiaxin Zhang, Sirui Bi, and Guannan Zhang
    In International Conference on Artificial Intelligence and Statistics, 2021
  12. ICLR Workshop
    Efficient inverse learning for materials design and discovery
    Jiaxin Zhang, and Victor Fung
    In ICLR 2021 Workshop on Science and Engineering of Deep Learning, 2021
  13. ICLR Workshop
    Towards Efficient Uncertainty estimation in deep learning for robust energy prediction in crystal materials
    Sirui Bi, Victor Fung, Jiaxin Zhang, and Guannan Zhang
    In ICLR 2021 Workshop on Deep Learning for Simulation, 2021
  14. AI4Science
    Monte Carlo simulation of order-disorder transition in refractory high entropy alloys: A data-driven approach
    Xianglin Liu, Jiaxin Zhang, Junqi Yin, Sirui Bi, Markus Eisenbach, and Yang Wang
    Computational Materials Science, 2021
  15. MSSP
    Imprecise global sensitivity analysis using bayesian multimodel inference and importance sampling
    Jiaxin Zhang, Stephanie TerMaath, and Michael D Shields
    Mechanical Systems and Signal Processing, 2021
  16. AI4Science
    A directional Gaussian smoothing optimization method for computational inverse design in nanophotonics
    Jiaxin Zhang, Sirui Bi, and Guannan Zhang
    Materials & Design, 2021
  17. WIREs
    Modern Monte Carlo methods for efficient uncertainty quantification and propagation: A survey
    Jiaxin Zhang
    Wiley Interdisciplinary Reviews: Computational Statistics, 2021

2020

  1. NeurIPS Workshop
    Scalable deep-learning-accelerated topology optimization for additively manufactured materials
    Sirui Bi, Jiaxin Zhang, and Guannan Zhang
    In NeurIPS 2020 Workshop on Machine Learning for Engineering Modeling, Simulation, and Design, 2020
  2. JPCM
    Fast and stable deep-learning predictions of material properties for solid solution alloys
    Massimiliano Lupo Pasini, Ying Wai Li, Junqi Yin, Jiaxin Zhang, Kipton Barros, and Markus Eisenbach
    Journal of Physics: Condensed Matter, 2020
  3. IJAR
    On the quantification and efficient propagation of imprecise probabilities with copula dependence
    Jiaxin Zhang, and Michael Shields
    International Journal of Approximate Reasoning, 2020
  4. SMO
    Toward the robust establishment of variable-fidelity surrogate models for hierarchical stiffened shells by two-step adaptive updating approach
    Kuo Tian, Zengcong Li, Xiangtao Ma, Haixin Zhao, Jiaxin Zhang, and Bo Wang
    Structural and Multidisciplinary Optimization, 2020
  5. AI4Science
    Robust data-driven approach for predicting the configurational energy of high entropy alloys
    Jiaxin Zhang, Xianglin Liu, Sirui Bi, Junqi Yin, Guannan Zhang, and Markus Eisenbach
    Materials & Design, 2020

2019

  1. JRPC
    Buckling surrogate-based optimization framework for hierarchical stiffened composite shells by enhanced variance reduction method
    Kuo Tian, Jiaxin Zhang, Xiangtao Ma, Yuwei Li, Yu Sun, and Peng Hao
    Journal of Reinforced Plastics and Composites, 2019
  2. NeurIPS 2019
    Learning Nonlinear Level Sets for Dimensionality Reduction in Function Approximation
    Guannan Zhang, Jiaxin Zhang, and Jacob Hinkle
    Advances in Neural Information Processing Systems, 2019
  3. AI4Science
    Chemical complexity in high entropy alloys: a pair-interaction perspective
    Xianglin Liu, Jiaxin Zhang, Sirui Bi, Yang Wang, G Malcolm Stocks, and Markus Eisenbach
    arXiv preprint arXiv:1907.10223, 2019
  4. AI4Science
    Machine learning modeling of high entropy alloy: the role of short-range order
    Xianglin Liu, Jiaxin Zhang, Markus Eisenbach, and Yang Wang
    arXiv preprint arXiv:1906.02889, 2019
  5. PEM
    Efficient Monte Carlo resampling for probability measure changes from Bayesian updating
    Jiaxin Zhang, and Michael D Shields
    Probabilistic Engineering Mechanics, 2019

2018

  1. TWS
    Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling
    Kuo Tian, Bo Wang, Ke Zhang, Jiaxin Zhang, Peng Hao, and Ying Wu
    Thin-Walled Structures, 2018
  2. CMAME
    The effect of prior probabilities on quantification and propagation of imprecise probabilities resulting from small datasets
    Jiaxin Zhang, and Michael D Shields
    Computer Methods in Applied Mechanics and Engineering, 2018
  3. MSSP
    On the quantification and efficient propagation of imprecise probabilities resulting from small datasets
    Jiaxin Zhang, and Michael D Shields
    Mechanical Systems and Signal Processing, 2018

2017

    2016

    1. RESS
      The Generalization of Latin Hypercube Sampling
      Michael D Shields, and Jiaxin Zhang
      Reliability Engineering & System Safety, 2016

    2015

    1. MBDSM
      Design optimization of connection section for concentrated force diffusion
      Jiaxin Zhang, Bo Wang, Fei Niu, and Gengdong Cheng
      Mechanics Based Design of Structures and Machines, 2015

    2014

    1. AMS
      Optimum design of hierarchical stiffened shells for low imperfection sensitivity
      Bo Wang, Peng Hao, Gang Li, Jia-Xin Zhang, Kai-Fan Du, Kuo Tian, Xiao-Jun Wang, and Xiao-Han Tang
      Acta Mechanica Sinica, 2014